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We investigate collective behaviors in a two-dimensional array of active elements controlled by time-
delayed feedback, where elements are prepared by localizing the Belousov-Zhabotinsky reaction in a gel
matrix. We demonstrate that both the spatial and temporal coherence can be effectively controlled by varying
feedback parameters, such as the time delay and the gain. For a sufficiently high feedback gain, the fully
synchronized state with low temporal coherence appears, which might be the state induced only by the delay
feedback. Experimental results are approximately reproduced in a numerical simulation with a forced Orego-
nator reaction-diffusion model.
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I. INTRODUCTION

When many elements capable of autonomous oscillation
are coupled, cooperative interactions among them reveal
complex but ordered collective dynamic behaviors as basic
manifestations of self-organization. The most significant of
these patterns are phase synchronization and clustering that
are frequently observed in physical �1�, chemical �2–4�, and
biological systems �5,6�. The coherence of spatiotemporal
dynamics can be controlled by external forcing, especially,
efficiently by feedback utilizing the inherent sensitivity to
external stimulations. Feedback techniques allow each active
element to interact with any other element in the array. This
offers possible approaches for designing desired interactions
among elements. In addition, variation of the feedback gain
and of the delay time can result in a qualitative change in
spatiotemporal patterns �7–12�.

Photosensitive Belousov-Zhabotinsky �BZ� reaction has
offered one of the best experimental systems to investigate
effects of feedback, in which the feedback can be achieved
by monitoring the local excitability of reaction media, pro-
cessing its image by computer, and illuminating the signal on
reaction media. In spatially extended excitable media, a spi-
ral wave and generic patterns have been effectively manipu-
lated using a real-time global feedback �13–16�. Similarly,
collective dynamics in discrete BZ systems, such as synchro-
nization and clustering, have also been effectively controlled
�17–19�. However, much less is known about the effect of a
time-delayed feedback on discrete oscillatory systems.

In this paper we experimentally investigate the effect of
time-delayed feedback on spatiotemporal dynamics in a two-
dimensional array of autonomous active elements in which
the BZ reaction is localized. We find that, when the delay
time is optimal, phase synchronization is induced at the feed-
back gain more than a threshold value. We reveal that the
spatiotemporal coherence of oscillations can be effectively
controlled by varying feedback parameters, such as the time
delay and the gain. The observed behaviors are numerically
reproduced, using an Oregonator model which takes into ac-
count the effect of feedback.

II. EXPERIMENT

The discrete BZ reaction system was constructed using
photolithography-assisted techniques �20,21�. Here the reac-
tor was made from the elastomeric material poly�dimethylsi-
loxane�. This methodology made it possible to freely control
features of the discrete reaction system, such as the size of
reactor units, the spacing between neighboring elements, and
the number of elements. In the experiment, reactor units of
about 430 �m in diameter and 65 �m in depth were ar-
ranged in the lattice with the spacing of 100 �m �Fig. 1�, in
which silica-gel matrices were prepared by acidifying the
solution of 125 �l of 20 wt % Na2SiO3, 100 �l of 20 mM
Ru�bpy�3SO4, and 100 �l of 10 M H2SO4. The light sensi-
tive catalyst, tris-�2,2�-bipyridine� ruthenium �II� complex
�Ru�bpy�3

2+�, was immobilized in silica-gel matrices. The re-
actor was placed into a chamber that was continuously fed
with fresh, catalyst-free BZ solution at a pumping rate of 6
ml/h to maintain constant, nonequilibrium conditions. The
initial composition of the catalyst-free BZ solution was
�NaBrO3�=0.4 M, �NaBr�=0.125 M, �CH2�COOH�2�
=0.4 M, and �H2SO4�=0.5 M. Reagent grade chemicals
were used without further purification. At this composition,
the system was in an oscillatory regime with the period Tp
=35�5 s. Here the period distribution results from some
scatter in the size of reactor units and temperature fluctua-
tions. Looking on a catalyst-doped microgel element in a
reactor unit as an oscillator, a two-dimensional array of these
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FIG. 1. Snapshot of the 10�10 microgel array with the spacing
of 100 �m.
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active elements can serve as a model of a network of cardiac
cells in living organisms. The temperature of the BZ solution
was maintained at 24�0.5 °C. A computer-controlled video
projector was used to illuminate the sample from below
through a 460 nm bandpass filter. The color changes due to
the redox reaction were detected in transmitted light by a
charge-coupled device camera and transformed into the
change in light intensity by the imaging system.

We controlled spatiotemporal behaviors in a 10�10 lat-
tice of oscillators by the time-delayed feedback. The illumi-
nation intensity of the feedback control is expressed as

I�t� = I0 + k�B�t − �� − B0� , �1�

where I0, k, and � are the background intensity, the feedback
gain, and the delay time, respectively. We chose a positive
value for k. These are significant parameters to control a
spatiotemporal coherence of the system. The intensity B�t� is
determined as the average of the light intensity over all os-
cillators in a N�N lattice:

B�t� =
1

N2�
i=1

N

�
j=1

N

Iij�t� , �2�

where Iij�t� is the light intensity of the oscillator �i , j� on an
eight-bit gray scale. The constant B0 is the value of B�t� at
the time when all reactor units are in the reduction state,
which was determined at the beginning of each experiment.
In the second term of Eq. �1�, therefore, the difference B�t
−��−B0 is always positive, representing the proportion of
oscillators in excited states. Thus the feedback force with
positive k tends to suppress the excitability of the system.
The intensity of feedback illumination was updated at the
interval of 1 s and interrupted during 0.1 s every 1 s in order
to capture the image of the state of the system.

In the absence of feedback, the coupling strength can be
controlled by the spacing between nearest neighbors, be-
cause the coupling between oscillators is accomplished via a
mass diffusion. For a large spacing, all oscillators behave
such as independent oscillators, while for a small spacing
they always do like a single oscillator. In the presence of
feedback, the interplay between feedback force and interac-
tions among oscillators is crucial for collective behaviors.
Therefore, we chose the spacing of about 100 �m, corre-
sponding to the intermediate coupling strength �21�. Figure 2
shows the spatiotemporal pattern of the light intensity from
oscillators �i ,5� �i=1�10� under the feedback control. The
phases of oscillators are randomly distributed before appli-
cation of the feedback. When �=1 s, the feedback scarcely
exerts its effect, that is, no synchronization occurs. When �
=10 s, that is, � gets closer to the refractory period of the
reaction tr, the system gradually evolves such that all oscil-
lators are eventually entrained, and finally full synchroniza-
tion takes place. Here tr was determined as the ensemble
average of the time taken for Iij�t� enhanced with activation
to be reduced to the steady value in a firing event.

In order to characterize the temporal coherence of oscil-
lators in a N�N lattice, we used the coherence measure R,
defined as

R =
1

N2�
i=1

N

�
j=1

N
�Tij�

	�Tij
2 � − �Tij�2

, �3�

where �Tij
m�= �1 /nf��k=1

nf �Tk
ij�m, nf is the number of firings,

and Tk
ij is the time interval between the kth and �k+1�th firing

events in the oscillator �i , j�. Figure 3�a� shows the depen-
dence of R on � at k=140. One can see that R periodically
varies with �. Such an oscillatory behavior of R is consistent
with the theoretical prediction �9�. Peaks appear at �1

10 s, �2
45 s, and �3
80 s. Here it should be noted
that the value of �1 is close to the refractory period tr. As the
time difference �n+1−�n �n=1,2� is almost equal to the mean
period of oscillation Tp, an optimal delay time �opt at which
R is maximized is given by �opt
 tr+ �n−1�Tp with n being
integer.

The feedback force influences not only the temporal co-
herence but also the spatial coherence of oscillators. To char-
acterize the synchronization behavior between oscillators in
the array, we introduce a phase of oscillator �22�,

�ij�t� = 2�
t − �k

ij

�k+1
ij − �k

ij , �k
ij � t � �k+1

ij , �4�

where �k
ij is the time of the kth firing of the oscillator �i , j�.

The phase difference between oscillators �i , j� and �l ,m� is
defined as 	ij,lm�t�=�ij�t�−�lm�t�. As the measure of syn-
chronization between oscillators �i , j� and �l ,m�, we use an
index expressed as 
ij,lm

2 = �cos 	ij,lm�2+ �sin 	ij,lm�2, where
the brackets denote the average over time �23�. Then the

(a) (b)

space

ti
m
e

FIG. 2. Spatiotemporal pattern of the light intensity in the os-
cillator array �i ,5� �i=1�10� controlled by the feedback with the
gain k=140; �a� �=1 s; �b� �=10 s.
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degree of phase coherence in a N�N lattice can be charac-
terized by calculating the spatial average,


 =
1

np
�
l=1

N

�
m=1

N

�
�ij,lm�


ij,lm, �5�

where np is the number of coupling pairs. In particular, 

=1 if all oscillators synchronize globally, whereas 
=0 if the
oscillators are uncoupled. Here the sum is over nearest
neighbor sites on the lattice. The dependence of 
 on � is
shown in Fig. 3�b�. One can see that 
 periodically changes
with �, which is entirely synchronized with R.

In order to furthermore clarify the effect of feedback, we
investigated the dependence of the spatiotemporal coherence
on the feedback gain k for various values of �, as shown in
Fig. 4. When � is quite small compared to the period of
oscillation, such as �=1 s, R monotonically decreases with
k, while 
 remains almost constant. The similar behavior is
observed when �=30 s. Thus, when the feedback has the
delay time independent of the characteristic time of the BZ
reaction, it does not affect collective behaviors. In contrast,
when � is close to the refractory period, i.e., �=10 s, 

abruptly increases to 0.9 at k beyond about kc=140, indicat-
ing that almost full synchronization occurs. This phenom-
enon might be regarded as a forced entrainment of 1:1 by the
time-delayed feedback. This is reminiscent of classical syn-
chronization phenomena. On the other hand, R is kept ap-
proximately constant below kc, but it tends to decrease above
kc.

Figures 4�c� and 4�d� show a typical time series of light
intensity �gray level� of the oscillator for small and large
values of k. We see that firing events become more irregular
with increasing k, even if � is close to the inherent refractory
period. Let us consider why such a temporal disorder grows.
An increase in k monotonously increases the mean period of

oscillation Tp for every �, as shown in Fig. 5. These behav-
iors result from the characteristic that feedback force tends to
inhibit activity of the oscillator. The increase in Tp results in
an effective increase in the refractory period of the reaction.
As long as the lengthened refractory period is still close to an
optimal delay time �, the temporal coherence of oscillation
remains high. Since an increase in k simultaneously strength-
ens a global coupling among oscillators, full synchronization
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γ
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FIG. 3. �a� Temporal coherence measure and �b� phase synchro-
nization measure as a function of � at the feedback gain k=140.
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FIG. 4. �a� Temporal coherence measure and �b� phase synchro-
nization measure as a function of the feedback gain k for various
values of the delay time. �c� and �d� Time series of the gray level of
the oscillator �2, 4� for �=10 s at k=0 and k=200, respectively.
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FIG. 5. Mean period of oscillation as a function of the feedback
gain for various values of �.
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can occur as shown in Fig. 2�b�. However, when the devia-
tion of the refractory period from �opt gets pronounced by a
further increase in k, R cannot hold a high value, as shown in
Fig. 3�a�. Then a fully synchronized state with low temporal
coherence appears. This state might be an additional one
induced only by delay feedback. According to this view, it
follows that it is possible to enhance R even at large k, if the
delay time larger than the inherent refractory period is used.
The case of �=15 s is shown in Fig. 4. As expected, R is
enhanced around k=180, although it monotonically de-
creases in the range of small k.

III. NUMERICAL SIMULATION

We modeled a two-dimensional array of limit cycle oscil-
lators coupled to its nearest neighbors. We employed the
three-variable Oregonator model modified to take into ac-
count the effects of feedback. In our experimental setup, the
catalyst Ru�bpy�3

2+ is immobilized in the silica-gel matrix, so
that its self-diffusion is negligible. The excitability of each
oscillator is influenced by the feedback illumination, because
the product of inhibitor Br− is promoted due to the photo-
chemical reaction of Ru�bpy�3

2+. Then the model equations
are given by

dui,j

dt
=

1

�
�ui,j − ui,j

2 − wi,j�ui,j − qi,j��

+ Ku�ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j� , �6�

dvi,j

dt
= ui,j − vi,j , �7�

dwi,j

dt
=

1

��
�fvi,j − wi,j�ui,j + qi,j� + ��

+ Kw�wi+1,j + wi−1,j + wi,j+1 + wi,j−1 − 4wi,j� , �8�

where the variables ui,j, vi,j, and wi,j describe the concentra-
tions of HBrO2, the Ru�bpy�3

3+ catalyst, and Br− in the oscil-
lator �i , j�, respectively. The coupling among oscillators is
controlled by the coupling strength Ku and Kw �=1.12Ku�. �,
��, and qi,j are scaling parameters and f is the stoichiometry
parameter. The parameter � represents the light-induced pro-
duction of Br−, expressed as

� = �0 + k�V�t − �� − V0� , �9�

where �0 corresponds to I0 and k is the feedback gain. The
intensity V�t� is determined as the average of vi,j over all
oscillators in a N�N lattice:

V�t� =
1

N2�
i=1

N

�
j=1

N

vi,j�t� . �10�

The constant V0 is the value of V�t� at the time when all
oscillators are in the steady state. These parameters were
chosen such that the system was in the oscillatory regime:
�=0.01, ��=0.0001, f =1.4, Ku=0.1, and �0=0. The param-
eters qi,j were randomly chosen between 0.0125 and 0.0275
to provide the distribution of the period to the oscillator ar-

ray. The computation was performed by the improved Euler
method with time steps �t=0.0001. The feedback force with
the duration time =500�t was globally applied to oscilla-
tors. The spatial separation of the oscillators was taken as
�x=1. The boundary conditions for both edge oscillators
were taken to be zero flux. The mean period of oscillation Tp
were distributed over the range of 1.8�0.4, where the re-
fractory period tr was about 0.88. We used indices R and 

defined in Eqs. �3� and �5� to characterize the degree of tem-
poral and spatial coherence, respectively.

Figure 6 shows the � dependence of R and 
 at log10
k=−1.3. We see that both change periodically and synchro-
nously with increasing � from �=0.15. The first maximum
appears at the value of � close to the refractory period tr, and
successive maxima appear at the interval of Tp. Thus the nth
optimal delay time �opt maximizing the spatiotemporal coher-
ence can be expressed as �opt
 tr+ �n−1�Tp �n=1,2 , . . .� in a
similar manner as the experimental results.

Note that the model, compared to the experiment, yields
higher values of R and lower values of 
. In the experiment,
the interspike interval of each oscillator fluctuates due to
thermal noise. This spontaneous fluctuation makes oscillators
in the intermediate coupling regime to occasionally synchro-
nize, resulting in large values of 
 to a certain extent. In the
model, in contrast, the interspike interval of each oscillator is
kept constant because of a limit cycle, although there exist a
distribution of periods among the oscillators. Accordingly,
the values of R lie much higher than in the case of the ex-
periment. On the other hand, synchronization rarely occurs
in the intermediate coupling regime, because the interspike
interval of each oscillator does not fluctuate. This results in
the low values of 
.

We investigated the dependence of the spatiotemporal co-
herence on k for various �, as shown in Fig. 7. When � is
very small compared to the refractory period, i.e., �=0.15, R

τ

R
γ

(a)

(b)

FIG. 6. �a� Temporal coherence measure and �b� phase synchro-
nization measure as a function of � at the feedback gain log10

k=−1.3.
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monotonously decreases with an increase in k, while 
 re-
mains unchanged. In contrast, when � is close to the refrac-
tory period, i.e., �=0.90, R is kept almost constant below
log10 kc=−1.6, but it rapidly decreases above kc. On the other
hand, 
 is rapidly enhanced when k is increased beyond kc.
These behaviors are in agreement with the experimental re-
sults.

An increase in k increases the mean period of oscillation
Tp, as shown in Fig. 8, resulting in an effective increase in
the refractory period. From the view that such a decrease in
R originates from the large deviation of the enhanced refrac-
tory period from 0.88, we investigated the k dependence of R
by setting � to 1.05, i.e., the value larger than the inherent
refractory period. As expected, R is enhanced around
log10 k=−1.0, as shown in Fig. 7. This is consistent with the
experimental observation.

The periodic variation in spatiotemporal coherence can be
explained according to Ref. �9�. For simplicity, we are con-
cerned with two limit cycle oscillators with slightly different
intrinsic periods, termed the oscillator 1 �OSC1� and the os-
cillator 2 �OSC2�. Figure 9�a� shows time series of two os-
cillators at a certain time. In the absence of the feedback, two

oscillators behave independently. In the presence of the feed-
back, the oscillator is forced to change the phase according
to the state of the oscillator; the phase is not influenced when
the state is in the refractory period, while a delay of phase
occurs when the state is in the steady period, because the
feedback illumination tends to inhibit activity of the oscilla-
tor. When �� tr, the feedback events can scarcely overlap, as
illustrated in Fig. 9�b�. That is to say, feedback forces from
both oscillators act independently. Such a feedback force can
never exert a cooperative effect leading to synchronization.
If �
 tr, the overlap of feedback events necessarily arises
with the elapse of time, resulting in a matching of phases
between oscillators �Fig. 9�c��.

When �� tr, the situation described for �� tr is repeated,
because firing events are repeated on the average at Tp.
Thus enhancement of coherence occurs when �
 tr
+ �n−1�Tp �n=1,2 , . . .�.

In the above, we were concerned with synchronization
between two oscillators. We now consider the synchroniza-
tion process in a 10�10 array of oscillators with phases
distributed randomly. Figure 10 illustrates the temporal evo-
lution of the phase distribution. When �� tr, the phase re-
mains scattered around the circle irrespective of the time
elapse. Here three clusters apparently arise, but they are quite
unstable. When �
 tr, in contrast, phases approximately con-
verge in a unique value at t=6. This state is robust, indicat-
ing the occurrence of full synchronization.

IV. CONCLUSION

We have experimentally and numerically investigated the
effect of time-delayed feedback on both spatial and temporal

T
p

log10 k

FIG. 8. Mean period of oscillation as a function of the feedback
gain for various values of �.

R
γ

(a)

(b)

log
10
k

FIG. 7. �a� Temporal coherence measure and �b� phase synchro-
nization measure as a function of the feedback gain k for various
values of the delay time.
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FIG. 9. Schematic time series of two oscillators, �a� in the absence of feedback force, and in the presence of feedback force with the delay
time �b� �� tr and �c� �
 tr. Gray areas indicate profiles of feedback illumination. Arrows show delay of phase due to the feedback force
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coherence in a two-dimensional array of self-sustained oscil-
lators based on the BZ reaction. We have demonstrated that it
makes possible to freely increase or decrease the spatiotem-

poral coherence by adjusting the delay time. The feedback
with an appropriate gain can maximize both spatial and tem-
poral coherence when the delay time is close to the refractory
period. However, too strong feedback decreases the temporal
coherence, even if the delay time is optimal, although the
fully synchronized state is maintained.

Coupling among oscillators in the present system is
achieved by both mass diffusion and global feedback. Hence
the interplay between both effects plays a significant role in
organizing observed dynamics. When the spacing between
oscillators is large to such an extent that a local coupling is
negligible, only global coupling becomes feasible through
feedback. Further inspection in this connection is in
progress.
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